Topic 5:

Non-Linear Relationships and Non-Linear Least Squares

Non-linear Relationships

Many relationships between variables are non-linear. (Examples)

OLS may not work (recall A.1). It may be biased and inconsistent. In other
situations, we may still be able to use OLS, either by approximating the non-linear

relationship, or by appropriately transforming the population model.




e The models we’ve worked with so far have been linear in the parameters.
e They’ve been of the form: Yy =XfB + &

e Many models based on economic theory are actually non-linear in the

parameters.

e In general:

y=f(0;X)+¢
where f is non-linear.

e Note the linear model is a special case.



Transforming a non-linear population model

Cobb-Douglas production function:
Y = AKPz2F3¢
By taking logs, the Cobb-Douglas production function can be rewritten as:
logY =B + B, logK + B3 log L + log(e)

This model now satisfies A.1 (linear in the parameters), however, it is not
advisable to estimate by OLS in most cases.

Silva and Tenreyro (2006)*: If log(¢) is heteroskedastic (it likely is), X and & are
not independent!

! Silva and Tenreyro (2006). The Log of Gravity. The Review of Economics and Statistics.



“It may be surprising that the pattern of heteroscedasticity ... can affect the
consistency of an estimator, rather than just its efficiency. The reason is that the
nonlinear transformation ...changes the properties of the error term in a
nontrivial way”

Approximations

Some mathematical properties may be exploited in order to approximate the
function f(0; X).

e Polynomials
e Logarithms

e Dummy variables



Polynomial Regression Model

One way to characterize the non-linear relationship between y and x Is to say that

the marginal effect of x on y depends on the value of x itself.

e Just include powers of the regressors on the right-hand-side
e Not a violation of A.2
© £0.y =fo + Pix + fox’ + fax’ + ot e

Take the derivative

Choosing B approximates the non-linear function f

The validity of the approximation is based on Taylor-series expansion

The appropriate order of the polynomial may be determined through a series

of t-tests



Logarithms

Can take the logarithm of the LHS and/or RHS variables.

e The fs have approximate percentage-change interpretations
e log-lin
e lin-log

e log-log
For example: logwage = B, + fieduc + [, female + ---+ ¢

e Take the derivative w.r.t. educ
e Change in educ leads to a multiplicative change of exp(;) in wage
e approximately 1003;% change (approx. based on Taylor-series expansion of

exp(x))
e females make 100[exp(fS,) — 1]% more than males



Dummy variables — Splines

There may be a “break™ in the model so that it is “piecewise” linear.

e Example: wage before and after age = 18.
e “knots” and dummy variables
e [pictures and notes]

e Nothing in the unrestricted estimators to ensure the two functions join at the
knot

e Use RLS
e Multiple knots can be introduced

e Location of the knots can be arbitrary, leading to nonparametric kernel

regression



Non-linear population models

There are many situations where transformations/approximations of the non-
linear model is not desirable/possible, and the non-linear pop. model should be

estimated directly.

e CES Production function:
Y; = y[(SKi_p + (1 - 6)Li_p]_v/pexp(el-)
or, () = In(y) = (2) In[6K° + (1 = L] +e;

e Linear Expenditure System: (Stone, 1954)

Max. U(q) = ),; B;Iin(q; — v;) (Stone-Geary /Klein-Rubin)
st Xipiqi =M



Yields the following system of demand equations:

PiCIiZViPi+,3i(M—ZjVij) , 1=1,2,...,n

The [5;’s are the Marginal Budget Shares.
So,werequirethat 0 < 3; < 1; i=1,2,.....n.
e Box-Cox transform (often applied to positive valued variables
e “Limited dependent variables”
o Yy must be positive (or negative)
oy is a dummy

o Yy IS an integer



In general, suppose we have a single non-linear equation:

Vi = f(xil,xiz, ey Xiks 61, 82, ey Hp) + &
e We can still consider a “Least Squares” approach.

e The Non-Linear Least Squares estimator is the vector, 8 , that minimizes the

quantity: S(X,0) = Xly; — fi(X, @)]2 .

Clearly the usual LS estimator is just a special case of this.

To obtain the estimator, we differentiate S with respect to each element of

0; set up the “p” first-order conditions and solve.

Difficulty — usually, the first-order conditions are themselves non-linear in

the unknowns (the parameters).

This means there is (generally) no exact, closed-form, solution.

e Can’t write down an explicit formula for the estimators of parameters.
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Example

oS _
20,

dS
00,

dS
90,

= —2 ) [(B3xia + Xi2) (Vi — 01 — O, — O
l

= —2 Z[(szi4 +x;3) (Vi — 01 — x5 — O3x;3
i

= 01 + O,x;5 + O3x;3 + (0,03)x;4 + &

S = z — 0% — O3x;3 — (9293)Xi4]2

2[)’—91 02xi2 — O3xi3 — (0203)x4]

— 6,03x;4) ]

— 0,03x4)]
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Setting these 3 equations to zero, we can’t solve analytically for the estimators

of the three parameters.

¢ |n situations such as this, we need to use a numerical algorithm to obtain a
solution to the first-order conditions.

e Lots of methods for doing this — one possibility is Newton’s algorithm (the

Newton-Raphson algorithm).

Methods of Descent
0 =0,+sd(0,)
0, = initial (vector) value.

S

d(.)

step-length  (positive scalar)

direction vector
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Usually, d(.) Depends on the gradient vector at 9.

It may also depend on the change in the gradient (the Hessian matrix) at 6,.

e Some specific algorithms in the “family” make the step-length a function of
the Hessian.
e One very useful, specific member of the family of “Descent Methods” 1s the

Newton-Raphson algorithm:

Suppose we want to minimize some function, f(8).

Approximate the function using a Taylor’s series expansion about 0 , the vector

value that minimizes f(0):

~ 1 (0 1 [ 02 -
f(0) = f(6)+(6-0) (—£)§+§(9—9) [aea];'L(e_e)
0
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Or:

~ ~~N 7 ~ 1 ~~N 7 ~ ~
(@) =f(0)+(0-6)g(6) + i(49 —0)H(6)(6-0)
So,

1 (8)

TR =0+ (0 - 9)g(9)+12H(9)(9 0)

However, g() = 0 ; as 6 locates a minimum.

So,
(0-8)=H®) (%) ;

or, 0=0-H10)g9(0)




This suggests a numerical algorithm:

Set @ = 0O, to begin, and then iterate —
0, =0,—H""(01)9(8o)

6,=6,—H'(0,)9(6,)

0,1 =0, — H_1(9n+1).g(9n)

or, approximately:

0,1 =0, — H_l(en)g(en)
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(1) (1)
6 -0 .
Stop if ( n+1(l.) n) < W . i=1,2,..,p
97’1
Note:
1. S=1.

2. d(0,) = _H_l(en)g(en) :

3. Algorithm fails if H ever becomes singular at any iteration.
4. Achieve a minimum of f (.) if H is positive definite.

5. Algorithm may locate only a local minimum.

6. Algorithm may oscillate.

The algorithm can be given a nice geometric interpretation — scalar 6.
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To find an extremum of f (.), solve

of(6)

90

g6)=0.
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g(6,)
0y — 01

= 6, =6y —H 1(65)9(6y)

=H(0,) <« ——

I
I
I
Onr1 =0, — H1(6,)9(6,) |
I
I
I
I
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If £(0) Is quadratic in @, then the algorithm converges in one iteration:

If the function is quadratic, then its

gradient is linear:

Hmin
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In general, different choices of 6, may lead to different solutions, or no
solution at all.

Hm ax
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The Hessian is singular
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The algorithm “cycles”

\
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Example (Where we actually know the answer)

f(8) =30*—40°%+1 locate minimum

Analytically:
g(0) = 1263 —126% =126%(8 — 1)
H(0) = 3602 — 240 = 126(30 — 2)
Turning pointsat =0, 1.
HO0)=0 saddlepoint
H(1) =12 minimum

Algorithm

On+1 =0 — H_l(Hn)g(Hn)
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9():2

6, =2—(3)=15
6, =1.5— (%55) = 1.2
03 = 1.2~ (23;05460) = 1.05

etc.

(say)
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