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Non-linear Relationships 

Many relationships between variables are non-linear. (Examples) 

OLS may not work (recall A.1). It may be biased and inconsistent. In other 

situations, we may still be able to use OLS, either by approximating the non-linear 

relationship, or by appropriately transforming the population model. 

  

Topic 5: 

Non-Linear Relationships and Non-Linear Least Squares 
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 The models we’ve worked with so far have been linear in the parameters. 

 They’ve been of the form:        𝒚 = 𝑋𝜷 + 𝜺 

 Many models based on economic theory are actually non-linear in the 

parameters. 

 In general: 

𝒚 = 𝑓(𝜽; 𝑋) + 𝜺 

 where 𝑓 is non-linear. 

 Note the linear model is a special case. 
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Transforming a non-linear population model 

Cobb-Douglas production function: 

 

𝑌 = 𝐴𝐾𝛽2𝐿𝛽3휀 

 

By taking logs, the Cobb-Douglas production function can be rewritten as: 

 

log 𝑌 = 𝛽1 + 𝛽2 log𝐾 + 𝛽3 log 𝐿 + log(휀) 

 

This model now satisfies A.1 (linear in the parameters), however, it is not 

advisable to estimate by OLS in most cases. 

 

Silva and Tenreyro (2006)1: If log(휀) is heteroskedastic (it likely is), 𝑋 and 𝜺 are 

not independent! 

                                                           
1 Silva and Tenreyro (2006). The Log of Gravity. The Review of Economics and Statistics. 
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“It may be surprising that the pattern of heteroscedasticity … can affect the 

consistency of an estimator, rather than just its efficiency. The reason is that the 

nonlinear transformation …changes the properties of the error term in a 

nontrivial way” 

 

Approximations 

Some mathematical properties may be exploited in order to approximate the 

function 𝑓(𝜽; 𝑋). 

 Polynomials 

 Logarithms 

 Dummy variables 
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Polynomial Regression Model 

One way to characterize the non-linear relationship between 𝑦 and 𝑥 is to say that 

the marginal effect of 𝑥 on 𝑦 depends on the value of 𝑥 itself. 

 Just include powers of the regressors on the right-hand-side 

 Not a violation of A.2 

 e.g. 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝛽3𝑥

3 +⋯+ 휀 

 Take the derivative 

 Choosing 𝜷 approximates the non-linear function 𝑓 

 The validity of the approximation is based on Taylor-series expansion 

 The appropriate order of the polynomial may be determined through a series 

of t-tests 
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Logarithms 

Can take the logarithm of the LHS and/or RHS variables. 

 The 𝛽s have approximate percentage-change interpretations 

 log-lin 

 lin-log 

 log-log 

For example: log𝑤𝑎𝑔𝑒 = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐 + 𝛽2𝑓𝑒𝑚𝑎𝑙𝑒 + ⋯+ 휀 

 Take the derivative w.r.t. 𝑒𝑑𝑢𝑐 

 Change in 𝑒𝑑𝑢𝑐 leads to a multiplicative change of exp(𝛽1) in 𝑤𝑎𝑔𝑒 

 approximately 100𝛽1% change (approx. based on Taylor-series expansion of 

exp(𝑥)) 

 females make 100[exp(𝛽2) − 1]% more than males 
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Dummy variables – Splines 

There may be a “break” in the model so that it is “piecewise” linear. 

 Example: wage before and after age = 18. 

 “knots” and dummy variables 

 [pictures and notes] 

 Nothing in the unrestricted estimators to ensure the two functions join at the 

knot 

 Use RLS 

 Multiple knots can be introduced 

 Location of the knots can be arbitrary, leading to nonparametric kernel 

regression 

  



8 
 

Non-linear population models 

There are many situations where transformations/approximations of the non-

linear model is not desirable/possible, and the non-linear pop. model should be 

estimated directly. 

 CES Production function: 

𝑌𝑖 = 𝛾[𝛿𝐾𝑖
−𝜌

+ (1 − 𝛿)𝐿𝑖
−𝜌
]
−𝑣/𝜌

exp(휀𝑖) 

or,         𝑙𝑛(𝑌𝑖) = 𝑙𝑛(𝛾) − (
𝑣

𝜌
) 𝑙𝑛[𝛿𝐾𝑖

−𝜌
+ (1 − 𝛿)𝐿𝑖

−𝜌
] +휀𝑖 

 Linear Expenditure System:                                                    (Stone, 1954)  

 

Max. 𝑈(𝒒) = ∑ 𝛽𝑖𝑙𝑛(𝑞𝑖 − 𝛾𝑖)𝑖               (Stone-Geary /Klein-Rubin) 

s.t.   ∑ 𝑝𝑖𝑞𝑖 = 𝑀𝑖  
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Yields the following system of demand equations: 

         𝑝𝑖𝑞𝑖 = 𝛾𝑖𝑝𝑖 + 𝛽𝑖(𝑀 − ∑ 𝛾𝑗𝑝𝑗𝑗 )     ;    i = 1, 2, …., n 

 

The 𝛽𝑖’s are the Marginal Budget Shares. 

So, we require that 0 < 𝛽𝑖 < 1 ;   i = 1, 2, …., n. 

 Box-Cox transform (often applied to positive valued variables 

 “Limited dependent variables” 

o y must be positive (or negative) 

o y is a dummy 

o y is an integer 
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In general, suppose we have a single non-linear equation: 

𝑦𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘; 𝜃1, 𝜃2, … , 𝜃𝑝) + 휀𝑖 

 We can still consider  a “Least Squares” approach. 

 The Non-Linear Least Squares estimator is the vector, �̂� , that minimizes the 

quantity:   𝑆(𝑋, 𝜽) = ∑ [𝑦𝑖 − 𝑓𝑖(𝑋, �̂�)]
𝟐

𝒊  . 

 Clearly the usual LS estimator is just a special case of this. 

 To obtain the estimator, we differentiate S with respect to each element of  

�̂�; set up the “p” first-order conditions and solve. 

 Difficulty – usually, the first-order conditions are themselves non-linear in 

the unknowns (the parameters). 

 This means there is (generally) no exact, closed-form, solution. 

 Can’t write down an explicit formula for the estimators of parameters. 
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Example  

𝑦𝑖 = 𝜃1 + 𝜃2𝑥𝑖2 + 𝜃3𝑥𝑖3 + (𝜃2𝜃3)𝑥𝑖4 + 휀𝑖 

𝑆 =∑[𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − (𝜃2𝜃3)𝑥𝑖4]
2

𝑖

 

𝜕𝑆

𝜕𝜃1
= −2∑[𝑦𝑖−𝜃1−𝜃2𝑥𝑖2−𝜃3𝑥𝑖3− (𝜃2𝜃3)𝑥𝑖4]

𝑖

 

𝜕𝑆

𝜕𝜃2
= −2∑[(𝜃3𝑥𝑖4 + 𝑥𝑖2)(𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − 𝜃2𝜃3𝑥𝑖4)]

𝑖

 

𝜕𝑆

𝜕𝜃3
= −2∑[(𝜃2𝑥𝑖4 + 𝑥𝑖3)(𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − 𝜃2𝜃3𝑥𝑖4)]

𝑖

 



12 
 

Setting these 3 equations to zero, we can’t solve analytically for the estimators 

of the three parameters. 

 In situations such as this, we need to use a numerical algorithm to obtain a 

solution to the first-order conditions. 

 Lots of methods for doing this – one possibility is Newton’s algorithm (the 

Newton-Raphson algorithm). 

Methods of Descent  

                     𝜽̃ = 𝜽0 + 𝑠𝒅(𝜽0) 

𝜽0      =  initial (vector) value. 

s         =  step-length      (positive scalar) 

𝒅(. )  =  direction vector 
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 Usually, 𝒅(. ) Depends on the gradient vector at 𝜽0. 

 It may also depend on the change in the gradient (the Hessian matrix) at 𝜽0. 

 Some specific algorithms in the “family” make the step-length a function of 

the Hessian. 

 One very useful, specific member of the family of “Descent Methods” is the 

Newton-Raphson algorithm: 

Suppose we want to minimize some function, 𝑓(𝜽).      

Approximate the function using a Taylor’s series expansion about �̃� , the vector 

value that minimizes 𝑓(𝜽): 

𝑓(𝜽) ≅ 𝑓(�̃�) + (𝜽 − �̃�)
′
(
𝜕𝑓

𝜕𝜽
)
�̃�
+
1

2!
(𝜽 − �̃�)

′
[
𝜕2𝑓

𝜕𝜽𝜕𝜽′
]
�̃�

(𝜽 − �̃�) 
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Or: 

𝑓(𝜽) ≅ 𝑓(�̃�) + (𝜽 − �̃�)
′
𝑔(�̃�) +

1

2!
(𝜽 − �̃�)

′
𝐻(�̃�)(𝜽 − �̃�) 

So, 

𝜕𝑓(𝜽)

𝜕𝜽
≅ 0 + (𝜽 − �̃�)

′
𝑔(�̃�) +

1

2!
2𝐻(�̃�)(𝜽 − �̃�) 

However, 𝑔(�̃�) = 0 ;  as �̃� locates a minimum. 

So, 

 (𝜽 − �̃�) ≅ 𝐻−1(�̃�) (
𝜕𝑓(𝜽)

𝜕𝜽
)  ; 

or,                     �̃� ≅ 𝜽 − 𝐻−1(�̃�)𝑔(𝜽)  
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This suggests a numerical algorithm: 

Set 𝜽 = 𝜽0 to begin, and then iterate – 

𝜽1 = 𝜽0 − 𝐻−1(𝜽1)𝑔(𝜽0) 

𝜽2 = 𝜽1 − 𝐻−1(𝜽2)𝑔(𝜽1) 

                      ⋮      ⋮                     ⋮ 

𝜽𝑛+1 = 𝜽𝑛 − 𝐻−1(𝜽𝑛+1)𝑔(𝜽𝑛) 

or, approximately: 

 

𝜽𝑛+1 = 𝜽𝑛 − 𝐻−1(𝜽𝑛)𝑔(𝜽𝑛) 
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Stop if                      |
(𝜃𝑛+1

(𝑖)
−𝜃𝑛

(𝑖)
)

𝜃𝑛
(𝑖) | <  휀(𝑖)   ;    i = 1, 2, …, p 

Note: 

1.   s = 1. 

2.   𝒅(𝜽𝑛) = −𝐻−1(𝜽𝑛)𝑔(𝜽𝑛) . 

3.   Algorithm fails if H ever becomes singular at any iteration. 

4.  Achieve a minimum of f (.) if H is positive definite. 

5.   Algorithm may locate only a local minimum. 

6.   Algorithm may oscillate. 

The algorithm can be given a nice geometric interpretation – scalar θ. 
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To find an extremum of  f (.), solve  
𝜕𝑓(𝜃)

𝜕𝜃
= 𝑔(𝜃) = 0 . 

 

  
𝑔 

𝜃 

𝜃0  𝜃1  

𝜃𝑚𝑖𝑛  
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𝑔 

𝜃 

𝜃0  𝜃1  𝜃2  

𝜃𝑚𝑖𝑛  

 

𝜃𝑚𝑎𝑥  
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𝑔 

𝜃 

𝜃0  𝜃1  

𝜃𝑚𝑖𝑛  

 

𝑔(𝜃0)

𝜃0 − 𝜃1
= 𝐻(𝜃0) 

⇒  𝜃1 = 𝜃0 − 𝐻−1(𝜃0)𝑔(𝜃0)  

𝜽𝒏+𝟏 = 𝜽𝒏 −𝑯−𝟏(𝜽𝒏)𝒈(𝜽𝒏) 
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If 𝑓(𝜽) is quadratic in 𝜽, then the algorithm converges in one iteration: 

 

  
𝑔 

𝜃 

𝜃0  𝜃1  

𝜃𝑚𝑖𝑛  

 

If the function is quadratic, then its 

gradient is linear: 
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In general, different choices of  𝜃0 may lead to different solutions, or no 

solution at all. 

 

  
𝑔 

𝜃 

𝜃0  

𝜃𝑚𝑖𝑛  

 

𝜃𝑚𝑖𝑛  

 

𝜃𝑚𝑎𝑥  

 

𝜃𝑚𝑎𝑥  
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𝑔 

𝜃 

𝜃0  

The Hessian is singular 
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𝑔 

𝜃 

𝜃0  

𝜃1  

The algorithm “cycles” 



24 
 

Example           (Where we actually know the answer) 

               𝑓(𝜃) = 3𝜃4 − 4𝜃3 + 1                       locate minimum 

 

Analytically: 

𝑔(𝜃) = 12𝜃3 − 12𝜃2 = 12𝜃2(𝜃 − 1) 

𝐻(𝜃) = 36𝜃2 − 24𝜃 = 12𝜃(3𝜃 − 2) 

Turning points at = 0, 1 . 

𝐻(0) = 0                               saddlepoint 

𝐻(1) = 12             minimum     

         

Algorithm 

𝜃𝑛+1 = 𝜃𝑛 − 𝐻−1(𝜃𝑛)𝑔(𝜃𝑛) 



25 
 

𝜃0 = 2                                     (say) 

𝜃1 = 2 − (
48

96
) = 1.5             

𝜃2 = 1.5 − (
13.5

45
) = 1.2                 

𝜃3 = 1.2 − (
3.456

23.040
) = 1.05             

⋮  

etc.      

 

Try:     𝜃0 = −2;𝜃0 = 0.5                


