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Non-linear Relationships 

Many relationships between variables are non-linear. (Examples) 

OLS may not work (recall A.1). It may be biased and inconsistent. In other 

situations, we may still be able to use OLS, either by approximating the non-linear 

relationship, or by appropriately transforming the population model. 

  

Topic 5: 

Non-Linear Relationships and Non-Linear Least Squares 
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 The models we’ve worked with so far have been linear in the parameters. 

 They’ve been of the form:        𝒚 = 𝑋𝜷 + 𝜺 

 Many models based on economic theory are actually non-linear in the 

parameters. 

 In general: 

𝒚 = 𝑓(𝜽; 𝑋) + 𝜺 

 where 𝑓 is non-linear. 

 Note the linear model is a special case. 
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Transforming a non-linear population model 

Cobb-Douglas production function: 

 

𝑌 = 𝐴𝐾𝛽2𝐿𝛽3𝜀 

 

By taking logs, the Cobb-Douglas production function can be rewritten as: 

 

log 𝑌 = 𝛽1 + 𝛽2 log𝐾 + 𝛽3 log 𝐿 + log⁡(𝜀) 

 

This model now satisfies A.1 (linear in the parameters), however, it is not 

advisable to estimate by OLS in most cases. 

 

Silva and Tenreyro (2006)1: If log⁡(𝜀) is heteroskedastic (it likely is), 𝑋 and 𝜺 are 

not independent! 

                                                           
1 Silva and Tenreyro (2006). The Log of Gravity. The Review of Economics and Statistics. 
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“It may be surprising that the pattern of heteroscedasticity … can affect the 

consistency of an estimator, rather than just its efficiency. The reason is that the 

nonlinear transformation …changes the properties of the error term in a 

nontrivial way” 

 

Approximations 

Some mathematical properties may be exploited in order to approximate the 

function 𝑓(𝜽; 𝑋). 

 Polynomials 

 Logarithms 

 Dummy variables 
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Polynomial Regression Model 

One way to characterize the non-linear relationship between 𝑦 and 𝑥 is to say that 

the marginal effect of 𝑥 on 𝑦 depends on the value of 𝑥 itself. 

 Just include powers of the regressors on the right-hand-side 

 Not a violation of A.2 

 e.g. 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝛽3𝑥

3 +⋯+ 𝜀 

 Take the derivative 

 Choosing 𝜷 approximates the non-linear function 𝑓 

 The validity of the approximation is based on Taylor-series expansion 

 The appropriate order of the polynomial may be determined through a series 

of t-tests 
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Logarithms 

Can take the logarithm of the LHS and/or RHS variables. 

 The 𝛽s have approximate percentage-change interpretations 

 log-lin 

 lin-log 

 log-log 

For example: log𝑤𝑎𝑔𝑒 =⁡ 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐 + 𝛽2𝑓𝑒𝑚𝑎𝑙𝑒 + ⋯+ 𝜀 

 Take the derivative w.r.t. 𝑒𝑑𝑢𝑐 

 Change in 𝑒𝑑𝑢𝑐 leads to a multiplicative change of exp(𝛽1) in 𝑤𝑎𝑔𝑒 

 approximately 100𝛽1% change (approx. based on Taylor-series expansion of 

exp(𝑥)) 

 females make 100[exp(𝛽2) − 1]% more than males 
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Dummy variables – Splines 

There may be a “break” in the model so that it is “piecewise” linear. 

 Example: wage before and after age = 18. 

 “knots” and dummy variables 

 [pictures and notes] 

 Nothing in the unrestricted estimators to ensure the two functions join at the 

knot 

 Use RLS 

 Multiple knots can be introduced 

 Location of the knots can be arbitrary, leading to nonparametric kernel 

regression 
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Non-linear population models 

There are many situations where transformations/approximations of the non-

linear model is not desirable/possible, and the non-linear pop. model should be 

estimated directly. 

 CES Production function: 

𝑌𝑖 = 𝛾[𝛿𝐾𝑖
−𝜌

+ (1 − 𝛿)𝐿𝑖
−𝜌
]
−𝑣/𝜌

exp⁡(𝜀𝑖) 

or,         𝑙𝑛(𝑌𝑖) = 𝑙𝑛(𝛾) − (
𝑣

𝜌
) 𝑙𝑛[𝛿𝐾𝑖

−𝜌
+ (1 − 𝛿)𝐿𝑖

−𝜌
] +𝜀𝑖 

 Linear Expenditure System:                                                    (Stone, 1954)  

 

Max. 𝑈(𝒒) = ∑ 𝛽𝑖𝑙𝑛(𝑞𝑖 − 𝛾𝑖)𝑖               (Stone-Geary /Klein-Rubin) 

s.t.   ∑ 𝑝𝑖𝑞𝑖 = 𝑀𝑖  
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Yields the following system of demand equations: 

         𝑝𝑖𝑞𝑖 = 𝛾𝑖𝑝𝑖 + 𝛽𝑖(𝑀 − ∑ 𝛾𝑗𝑝𝑗𝑗 )     ;    i = 1, 2, …., n 

 

The 𝛽𝑖’s are the Marginal Budget Shares. 

So, we require that 0 < 𝛽𝑖 < 1 ;   i = 1, 2, …., n. 

 Box-Cox transform (often applied to positive valued variables 

 “Limited dependent variables” 

o y must be positive (or negative) 

o y is a dummy 

o y is an integer 
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In general, suppose we have a single non-linear equation: 

𝑦𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘; 𝜃1, 𝜃2, … , 𝜃𝑝) + 𝜀𝑖 

 We can still consider  a “Least Squares” approach. 

 The Non-Linear Least Squares estimator is the vector, 𝜽̂ , that minimizes the 

quantity:   𝑆(𝑋, 𝜽) = ∑ [𝑦𝑖 − 𝑓𝑖(𝑋, 𝜽̂)]
𝟐

𝒊  . 

 Clearly the usual LS estimator is just a special case of this. 

 To obtain the estimator, we differentiate S with respect to each element of  

𝜽̂; set up the “p” first-order conditions and solve. 

 Difficulty – usually, the first-order conditions are themselves non-linear in 

the unknowns (the parameters). 

 This means there is (generally) no exact, closed-form, solution. 

 Can’t write down an explicit formula for the estimators of parameters. 
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Example  

𝑦𝑖 = 𝜃1 + 𝜃2𝑥𝑖2 + 𝜃3𝑥𝑖3 + (𝜃2𝜃3)𝑥𝑖4 + 𝜀𝑖 

𝑆 =∑[𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − (𝜃2𝜃3)𝑥𝑖4]
2

𝑖

 

𝜕𝑆

𝜕𝜃1
= −2∑[𝑦𝑖−𝜃1−𝜃2𝑥𝑖2−𝜃3𝑥𝑖3− (𝜃2𝜃3)𝑥𝑖4]

𝑖

 

𝜕𝑆

𝜕𝜃2
= −2∑[(𝜃3𝑥𝑖4 + 𝑥𝑖2)(𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − 𝜃2𝜃3𝑥𝑖4)]

𝑖

 

𝜕𝑆

𝜕𝜃3
= −2∑[(𝜃2𝑥𝑖4 + 𝑥𝑖3)(𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − 𝜃2𝜃3𝑥𝑖4)]

𝑖
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Setting these 3 equations to zero, we can’t solve analytically for the estimators 

of the three parameters. 

 In situations such as this, we need to use a numerical algorithm to obtain a 

solution to the first-order conditions. 

 Lots of methods for doing this – one possibility is Newton’s algorithm (the 

Newton-Raphson algorithm). 

Methods of Descent  

                     𝜽⁡̃ = 𝜽0 + 𝑠⁡𝒅(𝜽0) 

𝜽0      =  initial (vector) value. 

s         =  step-length      (positive scalar) 

𝒅(. )  =  direction vector 



13 
 

 Usually, 𝒅(. ) Depends on the gradient vector at 𝜽0. 

 It may also depend on the change in the gradient (the Hessian matrix) at 𝜽0. 

 Some specific algorithms in the “family” make the step-length a function of 

the Hessian. 

 One very useful, specific member of the family of “Descent Methods” is the 

Newton-Raphson algorithm: 

Suppose we want to minimize some function, 𝑓(𝜽).      

Approximate the function using a Taylor’s series expansion about 𝜽̃ , the vector 

value that minimizes 𝑓(𝜽): 

𝑓(𝜽) ≅ 𝑓(𝜽̃) + (𝜽 − 𝜽̃)
′
(
𝜕𝑓

𝜕𝜽
)
𝜽̃
+
1

2!
(𝜽 − 𝜽̃)

′
[
𝜕2𝑓

𝜕𝜽𝜕𝜽′
]
𝜽̃

(𝜽 − 𝜽̃) 
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Or: 

𝑓(𝜽) ≅ 𝑓(𝜽̃) + (𝜽 − 𝜽̃)
′
𝑔(𝜽̃) +

1

2!
(𝜽 − 𝜽̃)

′
𝐻(𝜽̃)(𝜽 − 𝜽̃) 

So, 

𝜕𝑓(𝜽)

𝜕𝜽
≅ 0 + (𝜽 − 𝜽̃)

′
𝑔(𝜽̃) +

1

2!
2𝐻(𝜽̃)(𝜽 − 𝜽̃) 

However, 𝑔(𝜽̃) = 0 ;  as 𝜽̃ locates a minimum. 

So, 

 (𝜽 − 𝜽̃) ≅ 𝐻−1(𝜽̃) (
𝜕𝑓(𝜽)

𝜕𝜽
)  ; 

or,                     𝜽̃ ≅ 𝜽 − 𝐻−1(𝜽̃)𝑔(𝜽)  
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This suggests a numerical algorithm: 

Set 𝜽 = 𝜽0 to begin, and then iterate – 

𝜽1 = 𝜽0 − 𝐻−1(𝜽1)𝑔(𝜽0) 

𝜽2 = 𝜽1 − 𝐻−1(𝜽2)𝑔(𝜽1) 

                      ⋮      ⋮                     ⋮ 

𝜽𝑛+1 = 𝜽𝑛 − 𝐻−1(𝜽𝑛+1)𝑔(𝜽𝑛) 

or, approximately: 

 

𝜽𝑛+1 = 𝜽𝑛 − 𝐻−1(𝜽𝑛)𝑔(𝜽𝑛) 
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Stop if                      |
(𝜃𝑛+1

(𝑖)
−𝜃𝑛

(𝑖)
)

𝜃𝑛
(𝑖) | < ⁡ 𝜀(𝑖)   ;    i = 1, 2, …, p 

Note: 

1.   s = 1. 

2.   𝒅(𝜽𝑛) = −𝐻−1(𝜽𝑛)𝑔(𝜽𝑛) . 

3.   Algorithm fails if H ever becomes singular at any iteration. 

4.  Achieve a minimum of f (.) if H is positive definite. 

5.   Algorithm may locate only a local minimum. 

6.   Algorithm may oscillate. 

The algorithm can be given a nice geometric interpretation – scalar θ. 
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To find an extremum of  f (.), solve  
𝜕𝑓(𝜃)

𝜕𝜃
= 𝑔(𝜃) = 0 . 

 

  
⁡⁡⁡⁡𝑔 

𝜃 

𝜃0  𝜃1  

𝜃𝑚𝑖𝑛  
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⁡⁡⁡⁡𝑔 

𝜃 

𝜃0  𝜃1  𝜃2  

𝜃𝑚𝑖𝑛  

 

𝜃𝑚𝑎𝑥  
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⁡⁡⁡⁡𝑔 

𝜃 

𝜃0  𝜃1  

𝜃𝑚𝑖𝑛  

 

𝑔(𝜃0)

𝜃0 − 𝜃1
= 𝐻(𝜃0) 

⁡⁡⁡⇒ ⁡⁡⁡⁡⁡⁡⁡⁡ 𝜃1 = 𝜃0 − 𝐻−1(𝜃0)𝑔(𝜃0)  

⁡⁡⁡⁡⁡⁡⁡⁡𝜽𝒏+𝟏 = 𝜽𝒏 −𝑯−𝟏(𝜽𝒏)𝒈(𝜽𝒏) 
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If 𝑓(𝜽) is quadratic in 𝜽, then the algorithm converges in one iteration: 

 

  
⁡⁡⁡⁡𝑔 

𝜃 

𝜃0  𝜃1  

𝜃𝑚𝑖𝑛  

 

If the function is quadratic, then its 

gradient is linear: 
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In general, different choices of  𝜃0 may lead to different solutions, or no 

solution at all. 

 

  
⁡⁡⁡⁡𝑔 

𝜃 

𝜃0  

𝜃𝑚𝑖𝑛  

 

𝜃𝑚𝑖𝑛  

 

𝜃𝑚𝑎𝑥  

 

𝜃𝑚𝑎𝑥  
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⁡⁡⁡⁡𝑔 

𝜃 

𝜃0  

The Hessian is singular 
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𝑔 

𝜃 

𝜃0  

𝜃1  

The algorithm “cycles” 
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Example           (Where we actually know the answer) 

               𝑓(𝜃) = 3𝜃4 − 4𝜃3 + 1                       locate minimum 

 

Analytically: 

𝑔(𝜃) = 12𝜃3 − 12𝜃2 = 12𝜃2(𝜃 − 1) 

𝐻(𝜃) = 36𝜃2 − 24𝜃 = 12𝜃(3𝜃 − 2) 

Turning points at = 0, 1 . 

𝐻(0) = 0                               saddlepoint 

𝐻(1) = 12             minimum     

         

Algorithm 

𝜃𝑛+1 = 𝜃𝑛 − 𝐻−1(𝜃𝑛)𝑔(𝜃𝑛) 
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𝜃0 = 2                                     (say) 

𝜃1 = 2 − (
48

96
) = 1.5             

𝜃2 = 1.5 − (
13.5

45
) = 1.2                 

𝜃3 = 1.2 − (
3.456

23.040
) = 1.05             

⋮  

etc.      

 

Try:     𝜃0 = −2;⁡⁡⁡⁡𝜃0 = 0.5                


